六年级数学教学设计

时间:2024-03-12 16:06:38
六年级数学教学设计

六年级数学教学设计

在教学工作者开展教学活动前,很有必要精心设计一份教学设计,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?下面是小编收集整理的六年级数学教学设计,仅供参考,希望能够帮助到大家。

六年级数学教学设计1

课题:表面涂色的正方体

教学内容:教科书第26——27页表面涂色的正方体。

  教学目标:

1.学生通过探索表面涂色的正方体的操作活动,观察并发现一面、二面、三面涂色以及无色小正方体的位置特点,以及它们的个数与正方体的点、面、棱数的数量关系。

2.学生在活动中进一步积累探索简单数学规律的经验,感悟数学思想方法,发展数学思维能力和空间观念。

3.学生在探索数学规律的过程中,进一步体会图形学习与实际生活的联系,获得成功发现数学规律的愉悦体验,激发学习数学的兴趣。

重、难点:

1.学生通过操作探索表面涂色的正方体的规律。

2.经过动手操作,增强学生的空间观念,能运用所学知识解决生活中的数学问题。

教具准备:

1.多媒体课件。

2.12个棱长被平均分成2份的正方体,12个棱长被平均分成3份的正方体,12个棱长被平均分成4份的正方体。

3.实验记录单。

教学过程:

  一、提出问题,激发兴趣。

师:前面我们学习了有关长方体和正方体的知识,知道什么是长方体和正方体的表面积和体积,也知道如何求表面积和体积。今天我们换个角度来研究正方体(出示表面涂色的正方体模型图)。看!这是一个正方体,我们在它的表面涂上颜色,今天这节课我们就来研究“表面涂色的正方体”。

  二、动手操作,探究规律。

(1)活动一:探究每条棱都平均分成2份的正方体表面涂色情况。

1.出示问题1:一个表面涂色的正方体,每条棱都平均分成2份,如果照下图的样子把它切开,能切成多少个同样大的的小正方体?

出示问题2:每个小正方体有几个面涂色?

(1)想一想:能切成8个同样大的小正方体。(板书:2×2×2=8)

(2)看一看:每个小正方体都有3个面涂色。板书:8

(3)得出结论:把大正方体的每条棱平均分成2份,分成了8个小正方体,8个小正方体都是3面涂色。

2.过渡:猜一猜,如果把正方体的每条棱都平均分成3份结果会不会也这样?

(2)活动二:探究每条棱都平均分成3份的正方体表面涂色情况。

1.出示问题1:把正方体的每条棱都平均分成3份,再把正方体切开,能切成多少个小正方体?

出示问题2:像这样切开后,小正方体表面涂色的情况一共有几种?分别是哪几种?

2.自主探究:

(1)观察猜想:切成的小正方体中,3面涂色、2面涂色、1面涂色的小正方体各有多少个?

师:根据学生猜测板书,这只是我们的猜测,究竟猜的对不对呢,打上?3面涂色、2面涂色、1面涂色的小正方体在什么位置,各有多少个呢,接下来我们还需要进一步来实验验证一下。

(2)动手实验:

①提出实验要求:

A、找一找:3面涂色、2面涂色、1面涂色的小正方体分别在什么位置?

B、数一数:每种小正方体各有几个?

C、填一填。

D、说一说:是怎么找到的?(教师巡视并指导让数的小组先汇报,再让算的小组汇报。)

②汇报演示:(按上面的顺序,让数的小组先全部汇报完,问:有没有不同的想法?达成共识。③得出结论:

(课件出示)像这样把正方体的棱平均分成3份,3面涂色的小正方体在顶点,有8个(板书:8);2面涂色的小正方体在棱中间,有12个(板书:12);1面涂色的小正方体在面中间,有6个(板书:6)。

3.回顾过程:

刚才我们把大正方体的棱平均分成3份,知道了3面涂色、2面涂色、1面涂色的小正方体的位置和个数,我们经历了怎样的过程才知道的?板书:观察猜想、实验验证(板书:找、数)、得出结论

过渡:刚刚我们研究了把棱平均分成3份时,分成的小正方体表面涂色的情况,如果把棱平均分成4份呢。

(3)活动三:每条棱都平均分成4份的正方体表面涂色情况。

1.出示问题:如果把大正方体的每条棱平均分成4份、5份,再切成同样大的小正方体,能切成多少个小正方体?其中3面、2面、1面涂色的小正方体分别在什么位置?各有多少个?(老师也给大家准备了这样一个模型)

2.自主探究:

(1)提出实验要求:(请你按前面的方法)

A、猜一猜:3面涂色、2面涂色、1面涂色的小正方体分别在什么位置?每种各有几个?

B、找一找。

C、填一填。

D、说一说:是怎么找到的?(教师巡视并了解学生可以用算的方法)

(2)汇报演示:

让数的小组先全部汇报完,问:有没有不同的想法?(如果没有,可以提示:除了一个一个数出个数,还有什么快速的方法知道2面涂色、1面涂色的小正方体个数?)达成共识。

后比较方法:有的小组是一个一个数出来的,有的小组是根据位置的特点算出来的,你更喜欢谁的方法?喜欢的理由?)

(3)得出结论:

(课件出示)3面涂色的小正方体在顶点,有8个;2面涂色的小正方体在棱中间,每条棱上有2个,12条棱共24个,为了更清楚地表示24是怎么来的,我们可以写成(板书:12×2=24);1面涂色的小正方体在面中间,每个面有4个,6个面共24个(板书:6×4=24)

(4)每条棱都平均分成5份的正方体表面涂色情况。

师:刚才我们研究了棱平均分成3份、4份时小正方体表面涂色的情况,那把棱平均分成5份呢,小正方体表面涂色的情况又会怎样呢?请小组合作,再填一填实验单:

正方体每条棱被平均分成的份数

3

4

5

6

n

三面涂色的块数

8

8

8

8

8

二面涂色的块数

12

(4-2)χ12=24

(5-2)χ12=36

(6-2)χ12=48

(n-2)χ12

一面涂色的块数

6

(4-2)2χ6=24

(5-2)2χ6=54

(6-2)2χ6=96

(n-2)2χ6

指名上讲台在白板上演示

4.过渡:刚才我们研究了棱平均分成3份、4份、5份时 ……此处隐藏26451个字……学。并对问题学生及时提醒,限时改正,逐步提高。

12、正考风,严肃考纪,真实反映学生的实际情况,树正气,树标兵,充分肯定学生的学习成果,杜绝学生的侥幸心理。

五、课时的安排(略)

六年级数学教学设计14

教学内容:北师大版数学第十二册第二单元教材第24页反比例的教学内容 。

教学目标:

1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。

2 、培养学生的逻辑思维能力。

3、渗透数学源于生活的观点。

重点难点

1、通过具体问题认识成反比例的量。

2、掌握成反比例的量得变化规律及其特征。

教具准备: 课件

教学过程

一、复习铺垫

师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)

师:简单概括两个相关联的量成正比例的关键是什么?生答,强调:他们的比值(商)一定。

二、谈话引题

师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)

三、猜想激趣

师:既然正与反意义是相反的,请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。

四、验证归纳

师:1.研究情境(一)

让学生把汽车行驶的速度和时间的表填完整。

观察上表,思考下面的问题:

(1)表中有哪两种量?

(2)时间是怎样随着速度的变化而变化的?

(3)表中那个量没有变?

(4)写出三者的关系式

2.研究情境(二)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。

写出关系式:每杯果汁量×杯数=果汗总量(一定)

以上两个情境中有什么共同点?

3.反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)

4.情境(三)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

五、课堂练习

1、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)圆柱体的体积一定,底面积和高。

(2)小林做10道数学题,已做的题和没有做的题。

(3)长方形的长一定,面积和宽。

(4)平行四边形面积一定,底和高。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

五、全课小结

今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?

六、作业:找一找生活中有哪些例子成反比例。

板书设计

反比例

速度×时间=路程(一定)

每杯的果汁量×分的杯数=果汁总量(一定)

两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

六年级数学教学设计15

1.简单而富有内涵的引入

余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

2.自发而科学严谨的探究

关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

3.数学思想和文化的渗透

在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

《六年级数学教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式