比的应用教案

时间:2024-05-07 09:39:10
比的应用教案范文集合八篇

比的应用教案范文集合八篇

作为一位无私奉献的人民教师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编精心整理的比的应用教案8篇,希望对大家有所帮助。

比的应用教案 篇1

教学目标:

(1)知识目标:使学生理解按比例分配的意义。

(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。

(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。

教学重点:分析理解按比例分配应用题的数量关系。

教学难点:掌握按比例分配应用题的解答方法。

教具准备:多媒体课件

教学过程:

一、学前准备

1、一个农场计划在100公顷的地里播种60公顷的大豆和40公顷玉米。大豆和玉米的播种面积各占这块地的几分之几?大豆和玉米播种面积的比是多少?

60÷100=3/5

40÷100=2/5

这里的3/5和2/5是什么意思?

2、60:40=3:2

你发现了什么?

二、探究新知

1、导入新课

在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?

2、教学例题2

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2,两种作物各播种多少公顷?

(1) 学生独立思考,相互说说:要分配什么?3:2是什么意思?

(2) 探究问题解决的方法

(3) 交流

(4) 用分数怎么解答?

总面积平均分成的份数:3+2=5

播种大豆的面积:100×3/5=60(公顷)

播种玉米的面积:100×2/5=40(公顷)

(5) 用归一方法怎么解答?

3、归纳小结:按比例分配的应用题有什么特点?怎样解答?

4、学习例题3

(1) 小组尝试解答检验

(2) 全班交流、反馈

三个班的总人数:47+45+48=140(人)

一班应栽的棵数:280×()=( )棵

二班应栽的棵数:280×()=( )棵

三班应栽的棵数:280×()=( )棵

(3) 例题2和例题3有什么相同点和不同点

三、巩固练习与检测

1、水果店运来桔子和梨共840千克,梨和桔子的重量的比是3:2,桔子和梨各重多少千克?

2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。

3、教材53页的2、3题

四、小结(略)

五、作业:练习十三的第一、二、五题。

比的应用教案 篇2

教学目标

1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。

2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。

3、树立用自己学来的知识帮忙解决问题的意识。

教学重点掌握按比例分配的解决方法.

教学难点灵活解决实际问题。

教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。

学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学过程

活动一

1、课前调查

奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?

牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。

2、实际操作

要配置220毫升奶茶,需要多少牛奶和多少红茶?

学生讨论,研究不同算法。

解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml

解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml

讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。

学生配置奶茶,共同品尝。

活动二

1、教学例2

书上例2,列式计算

2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。

活动三:

1、请帮忙配糖:

一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)

3、帮刘爷爷收电费

刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?

住户王家张家赵家李家

分电表度数40382953

3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?

4、总结全课

比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

比的应用教案 篇3

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1.男生人数是女生人数的( )

2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).

3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).

……此处隐藏2378个字……>(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例1中“紫色与红色块数的比是3:5”的含义是什么?

预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

2、展示例2的解题思路及方法……

3、展示“练一练3”的解题方法

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结

学了这节课,你有什么收获?

七、课堂作业

20页,1、2、4、5。

板书设计:

按比例分配的解题方法

一要知道分配的数量,二要知道按怎样的比分配

比的应用教案 篇8

教学内容:

北师大版六年级数学上册第55页、第56页。

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、进一步体会比的意义,提高解决问题的能力。

3、培养学数学的兴趣,养成良好的思维品质。

教学重点:

理解和掌握按一定的比进行分配的意义,并进行实际应用。

教学难点:

把比熟练地转化成分数,将分数知识横向迁移。

教学准备:

多媒体课件。

教学过程:

一、复习牵引(课件出示)

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)

学生自由发言,预设推断如下

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的(),女生是全班的()。

3、以男生为单位“1”,女生是男生的(),全班是男生的()。

4、以女生为单位“1”,男生是女生的(),全班是女生的()。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、情境导入,引出课题(课件出示)

昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?

三、合作探索,解决矛盾

1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。

2、说以说你的想法。组织反馈,逐一展示学生解题思路。

3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)

4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)

(出示课题:比的应用)

四、自主探索

1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。

思考:把这筐橘子分给大班和小班,怎么分合理?

学生商量分法,得出:按大班和小班的人数来分比较合理。

2、大班人数和小班人数的比是3:2 学生分好后,交流分法,填表完成。

3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。

学生试做。

4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。

四、交流方法,老师精讲

1、班内交流,老师答疑

三种方法

(1)、方法一:借助表格分。

(2)、方法二:画图

发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。

140个

140÷(3+2)=28 大班:28×3=84(个)

小班:28×2=56(个)

追问:为什么要“140÷(3+2)”?

(3)、方法三:根据分数的意义解题。先求出一共分成几份,再求出大班和小班分的个数分别占橘子总数的几分之几,最后根据分数的意义解题。

3+2=5 140× = 84(个)

140× = 56 (个)

答:大班分84个,小班分56个,比较合理。

2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。

⑴计算分配的总份数。

⑵计算各部分占总量的几分之几。

⑶根据分数乘法的意义解题。

五、巩固练习,深化认识

1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?

2、 3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?

3、完成教材第56页练一练第3题合理搭配早餐。

六、总结评价

1、回顾这节课所学的知识,谈谈收获。

2、布置作业。

板书设计:

比的应用

3+2=5 140× = 84(个)

140× = 56 (个)

答:大班分84个,小班分56个。

《比的应用教案范文集合八篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式